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Abstract
Physical and computational models are developed, used and benchmarked for studying the response of ITER tokamak
plasma facing components to runaway electron impact following a plasma disruption. The energy deposition,
temperature evolution and material melting thickness are calculated for a wide range of runaway electron parameters,
namely, electron kinetic energy, magnetic field, energy partition ratio (along and across magnetic field direction)
impact duration, and wall material composition. It is shown that the electron energy partition ratio will have a
significant effect on the wall heat load with melting of the first wall with beryllium armor possible. If tungsten
armor is used instead, the surface of the mockup is overheated and melted for all ranges of studied parameters of
the runaway electrons. Using an insert of a thin layer of a high-Z material inside the beryllium armor can mitigate
the heat load in the armor and heat sink structure.

PACS numbers: 52.40.Hf, 52.55.Fa, 52.55.Pi, 52.65.Pp

1. Introduction

The toroidal electric field in tokamak plasma devices gives rise
to the runaway electron phenomenon during the current phase
of a plasma disruption. Due to the decrease in the Coulomb
collision frequency with increasing energy, electrons with
energies larger than a critical threshold value are continuously
accelerated by the electric field. The accelerated electrons
excite waves due to the anomalous Doppler effect, i.e. a
gyrating electron is similar to a flying oscillator [1]. In
its coordinate system, a wave with phase velocity smaller
than the electron phase velocity seems like a wave with
‘negative’ energy. Therefore, the runaway electron can excite
a wave, and increase its lateral energy and decrease its
longitudinal velocity. Because of the generation of such fan
type instability, the tokamak plasma initiates an oscillation
burst with high-energy electron emission [2, 3]. The runaway
electron phenomena were discussed at the 6th IAEA Technical
Committee Meeting (2000) where its status was changed from
an innocuous phenomenon, mainly used to probe magnetic
turbulence, to a serious threat to the ITER (or any future
large tokamak) first wall [4]. The effect of the runaway
electrons impinging at the vessel walls is strongly dependent
on the energy gained in the tokamak toroidal electric field.
To date, a number of experimental [2, 3, 5–10] and theoretical

[11–14] investigations exist to predict the main parameters
of the runaway electrons. These studies analysed the energy
of electrons, energy density of the runaway electron impact
and duration of the electron impact. Several numerical
simulations were carried out using realistic tokamak wall
geometries and runaway electron impact parameters [15–20]
and showed surface melting of wall armor material of up to
several millimetres depth.

The aim of this paper is to develop integrated modelling
to predict the behaviour of the ITER first wall geometry [19]
for a wide range of runaway electron parameters using the
integrated self-consistent high energy interaction with general
heterogeneous target systems (HEIGHTS) computer package
[21–23]. This package is capable of predicting the details
of internal damage of the first wall assembly in full 3D. The
HEIGHTS package is then used to develop a safe design
configuration to prevent surface and internal structural melting.

2. Mathematical and physical model

The HEIGHTS integrated model has been developed as
an instrument for the simulation and optimization of the
interaction processes during the intense energy deposition of
various energy sources such as plasma, laser and particle beams
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incident on target materials. Recently, HEIGHTS investigated
in detail the effect of plasma instabilities including VDEs,
ELMs and disruptions on plasma facing components (PFCs)
of a tokamak reactor [21, 22]. The integrated model combines
four main parts: energy deposition, target hydrodynamic
evolution, radiation transport and energy dissipation (with
both heat conduction and magnetic diffusion). The energy
deposition model was upgraded in HEIGHTS for the case of
runaway electron deposition by taking into account the various
interaction mechanisms of beam electrons with surface target
atoms. For pair collisions, the incident particle is assumed
to interact simultaneously with only one particle of the target
(nucleus or electron). This interaction occurs at one point and
instantly. Our Monte Carlo model is based on this principle
and assumes that energetic particles are remote from each
other by a distance larger than the Coulomb shielding in the
target. Because runaway electrons have initially relativistic
energy, we included in our relativistic Monte Carlo model
six main processes [24–28]: (1) electron–electron scattering;
(2) electron–nuclear scattering; (3) Bremsstrahlung; (4)
photoabsorption; (5) Compton absorption and (6) Auger
relaxation. The effect of electron-positron pair production is
not included as a secondary process (after photon generation
via incident electron interaction). This process is important
for energy deposition of very high photons energies [29].

Our Monte Carlo model is based on the pair collisions
approximation 30. The transport of electrons is therefore,
dominated by the long-range Coulomb force. This results in
large numbers of small interactions. For example, an electron
in aluminium slowing down from 500 to 63 keV will undergo
about 105 individual interactions. Therefore, it is not practical
to try to simulate every interaction, i.e. a single-collision
Monte Carlo approach to electron transport is infeasible for
many situations of practical interest. On the other hand, the
low momentum transfer events that give rise to large cross-
section values do not result in large fluctuations in energy
deposition. For this reason, they are lumped together and
treated in a continuous manner. The energy losses are due
to soft interactions with the atomic electrons (excitation and
ionization loss). The changes in electron direction are mostly
due to multiple Coulomb scattering from the nucleus, with
some contribution from soft electron scattering. Due to limited
computer power, it is not possible to take into account all
interactions of incident particles with every target particle.
To obtain reasonable accuracy, the scattering result of a large
enough number of separate collisions can be expanded on all
target interactions (see, for example, the TIGER code [31]).
However, most interactions do not separately have a critical
effect on the incident particle initial energy or direction of
motion. The combined contribution of all small interactions is
important, however, and comparable to the interaction of close
scattering events. Again, modelling of many small interactions
as separate events will significantly decrease calculation
efficiency. To overcome this problem, we combined all
interactions into two groups: close collisions and distant
collisions as commonly used in other Monte Carlo codes. The
criterion for the grouping is the energy that is transmitted to the
recoiled particle. In this model, all interactions where incident
particles lose <1% of their initial energy are defined as distant.
The distant interactions contribution (energy and direction)

is accumulated on a trajectory between two neighbour close
collisions and added at the end of the trajectory. The exact
border between close and distant collisions is varied and
depends on computer resources and needed accuracy. The
developed HEIGHTS Monte Carlo model makes use of the
low energy transfer grouping method [32].

The atomic electrons of the interacting medium are
considered free and at rest with respect to the incident electrons
with kinetic energy higher than 1 keV. This assumption is
fairly accurate because the characteristic velocity of the atomic
electrons is negligible compared with the high velocity of
the incident runaway electrons. In the laboratory coordinate
system the differential cross-section of energy transfer to the
atomic electron dσee has the form [24]
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where z is the nuclear charge of target atoms and N is the
number density of target atoms.

The energy loss per unit length x in distant collisions is
obtained by the integration of equation (1) in the range up to
�∗. Performing this integration, one obtains(
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Here I0 is the average ionization potential. This parameter
used in the Bethe theory is formally defined by z ln I0 =∑

n fn ln En, where En and fn are the possible electronic
energy transitions and corresponding dipole oscillator
strengths for the medium atoms [27, 28].

Elastic nuclear scattering processes are the main
contribution to the deflection of electrons. Energy loss in these
collisions per unit length is vanishingly small in comparison
with electron–electron interactions and can be neglected. The
close collisions cross-section is obtained by integration per
Rutherford representation [24]

σen = πN

(
ze2

2E

)2
1 + cos θ∗

1 − cos θ∗ , (4)
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where θ∗ is the deviation angle corresponding to threshold
energy T ∗ between close and distant collisions. The kinematic
relationship for the deviation angle and transferred energy is
taken into account as

T = 4
memn

(me + mn)2
E sin2 θ

2
(5)

with mn as the target particle mass.
The bremsstrahlung process was modelled following

the Bethe–Heitler relativistic theory [24, 33, 34] with the
differential cross-section dσbr given by
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where indexes ph, e, n corresponds to photon, electron and
nucleus; Eph is the generated photon energy; � is the solid
angle of particle after collision; α is the fine structure constant;
p, p′ are particle momentums before and after scattering;
η = Eet − �n �pec, η′ = E′

et − �n �p′
ec are reduced energies;

Eet = Ee + mec
2, E′

et = E′
e + mec

2 are total electron energy
before and after collision and the vector �n is determined
through wave vector �k as �n = �k/ω. Detailed derivation of
equation (6) Monte Carlo modelling can be found in [25, 26].

The photoabsorption cross-section depends essentially
on the charge of the medium nuclei and the photon energy.
Increasing the nucleus charge multiplies the absorption as zn,
where n is usually in the range from 4 up to 5 depending on the
photon energy. For low energies (<0.2 MeV) the absorption
cross-section is proportional to 1/E3

ph. For high energies
(>0.5 MeV) the cross-section is proportional to 1/Eph. In the
case of high-energy photons the maximal absorption occurs at
the K-shell of the target atoms. The differential cross-section
of photoabsorption is then written in the following form [24]

dσph

d�
= σn(Eph) sin2 θ cos ϕ(1 + 4β cos θ), (7)

where d� is the solid angle of the ejected photoelectron;
σn(Eph) is the cross-section of photoabsorption at the
corresponding shell; θ , ϕ are the polar and azimuthal angles;
β = v/c and v is the photoelectron velocity. The σn is
determined from the result of quantum mechanical calculations
in accordance with the Hartree–Fock–Slater model [27, 28].
We assumed also that the Auger photons generated by
relaxation of electron shells are absorbed within the same
calculation cell due to their low energy.

When the resultant photon energy is higher than the
average ionization potential of the medium atoms Compton
scattering is the predominant interaction process. In Compton
scattering a photon interacting with an atomic electron changes
its direction and transfers part of its energy to the electron. This
process dominates in the energy range 1–50 MeV for elements
with low and mean atomic numbers [29]. We modelled
the Compton processes following the Klein–Nishina–Tamm

Figure 1. Incident angle ψ of charged particle depends on Larmor
radius rL, spiral pitch pL, azimuthal particle angle ϕ and magnetic
field incline αB. The ψ angle is equal to αB in the case of �v|| �B.

theory, where the differential cross section dσcom can be
expressed as
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which was integrated to obtain total cross-section of scattering
in [1/cm]
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Here x = 2Eph/mec
2 is the reduced energy of the photon.

The processes described above were modelled in three-
dimensional space using the Neumann method [35]. As
we noted, the developed model is related to the small
energy transfer grouping scheme [36] most advanced for the
construction of branching trajectories. Collisions that transfer
large energy are simulated in HEIGHTS as in the model of
catastrophic collisions. Collisions with low energy transfer
are summed. The length of ‘free path’ steps between close
interactions is sampled randomly by using the derived total
macroscopic cross-sections of each process. Along these
steps, the electron is assumed to follow a spiral line, and the
multiple scattering is accounted for by changing the electron
direction at the end of the step. Equation of motion for
charged particles in magnetic field is given in [37]. Most
of previously published work [15–19] consider the initial
runaway electron beam as parallel to the magnetic field. This
is done to minimize computer time. However, runaway
electrons should have a significant perpendicular to magnetic
field component of the velocity as in [2, 3, 5, 12] and should
arrive at the first wall surface in a spiral fashion. As shown
in figure 1, the incident angle ψ of particle depends on the
Larmor radius, on the spiral pitch, and on the magnetic field
direction. Our initial calculations showed that the incident
angle of the runaway electrons is very important for the target
energy deposition because the mean free path of electrons in
matter is much shorter since the Larmor radius, and the photons
(secondary particles) motion is independent of the magnetic
field. Unfortunately, direct analytical solution does not exist
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Figure 2. Schematic of the incident electron impact angle.

for calculation of the target surface incident angle of a spiral
moving particle.

We therefore developed a Monte Carlo algorithm of the
electron incident angle sampled at the moment of touching the
target surface. Initial parameters are Larmor radius rL, Larmor
spiral pitch pL and magnetic field incident angle αB. The
incident angle is sampled in coordinate system S ′(x ′, y ′, z′)
where one axis (z′) is parallel to the magnetic field and the
second axis (x ′) is located on the target surface to limit the
transformation in the lab coordinates with only two Euler
angles [37]. Figure 2 schematically shows the calculation of
the transverse component of runaway electron velocity in the
coordinate system S ′. The maximum immersion depth of spiral
c = a + b can then be calculated as

c = pLabs
[
tg

(π

2
− αB

)]
. (10)

Therefore, the azimuthal angle ϕ can be sampled as

sin ϕ = ξpLabs
[
tg

(
π
2 − αB

)] − rL

rL
, (11)

where ξ is a random number in [0, 1] range. The sampled
direction is recalculated into the lab system S(x, y, z) with the
Euler transformation [37].

3. Validation and benchmarking

We are interested in benchmarking tests and comparisons that
verify the new energy deposition model from fast electrons
in first wall materials, since the heat conduction part of the
HEIGHTS package is well benchmarked [38–40]. The energy
deposition distribution in the standard case of semi-infinite
absorbers irradiated by plane-parallel electron beams was
chosen for this comparison. We present sample benchmarking
calculations using published data. The energy deposition in
beryllium for 1 MeV runaway electron deposition is shown
in figure 3 for normal beam incidence. The experimental
data of Lockwood et al [41] and Nakai [42], and theoretical
calculations of Tabata [43] are included in this comparison.
The Lockwood data are reproduced from the Tabata paper.
Our calculations of the integrals of these curves give values
of 963 keV for the Lockwood experiment and 996 keV for

Figure 3. Energy deposition of 1 MeV electrons in beryllium.

Figure 4. Energy deposition of 10 MeV electrons in copper.

the Nakai experiment. The Tabata calculations give 979 keV,
and the HEIGHTS value is 998 keV, therefore showing good
agreement. Figure 4 shows the energy deposition curves for
10 MeV electrons in copper. The comparison is made with
results of Tabata [43], Spencer [44] (taken from [45]), and
Morawska-Kaczynska [46]. The integral has value 9.58 MeV
for the HEIGHTS model, 8.60 MeV for Tabata calculations
and 8.61 MeV for [46]. The integral value of 10.36 MeV from
the Spencer theory is of concern in our opinion and may have
included incorrect data reproduced in [45] from another source.

To further compare our integrated model, we simulated
the case of energy deposition of a 10 MeV electron beam
with density of 50 MJ m−2 and pulse duration of 0.1 s into the
tokamak first wall geometry number 1 presented in [19, 20].
The temperature distribution and melted layer (grey) are shown
in figure 5 in an equivalent scale to the published data [19].
The value of the toroidal magnetic field was 8 T (at the
inboard wall). The reflected particles scattered from the target
surface were also taken into account in our calculations. The
HEIGHTS-computed molten beryllium thickness was 2.1 mm
in comparison with a value of 2.5 mm in [19]. The noticeable
difference in temperature on the top and bottom borders of the
temperature field in figure 5(b) [19] can be explained in terms
of using the outermost location of the module element in the
computational domain. We modelled the runaway electron
impact assuming a periodic mockup structure. This can be

4



Nucl. Fusion 49 (2009) 095003 V. Sizyuk and A. Hassanein

Figure 5. Temperature pattern and melted layer (grey) after energy
deposition by 10 MeV electrons (deposition time, 0.1 s; incidence
angle, 1◦): (a) HEIGHTS calculations; (b) Maddaluno et al [19, 20].

Figure 6. Schematic of first wall geometry and configuration.

done because the beam toroidal length is estimated as 40 cm
[19] and the mockup period is 2.8 cm in this direction.

The presented figures above show excellent agreement of
HEIGHTS calculations with the published experimental data
and numerical simulation. HEIGHTS can therefore be used
with reasonable confidence to explore complicated geometry
and design optimization for safe operation and mitigation of
runaway electron effects.

4. PFC setup and geometry

The geometry 1 given in [19] was used as the basic model for
our simulations (see figure 6). Thickness of armor material (Be
or W) was assumed 10 mm. The heat sink thickness (CuCrZr
alloy) was taken as 22 mm. Stainless steel (316LN) tubes had
an internal diameter of 10 mm and an external one of 12 mm,
pitch between neighbouring tubes was 28 mm. Coolant tubes
were located at the half-thickness of the heat sink. As in [19],
we oriented the X-, Y - and Z-axis into the toroidal the poloidal
and the radial direction, respectively. The thermal contacts

Figure 7. Runaway electron incident angle distributions for various
energy ratios. Electron energy, 50 MeV; magnetic field, 8 T and
magnetic field inclined angle, 1◦.

between different materials are considered to be perfect. The
thick dashed line in figure 6 represents the location of a
prospective additional adsorption layer to mitigate the effect of
runaway electrons (see simulation results section below). The
magnetic field B in the three-dimensional modelling space had
two directional angles: incident angle αB and azimuth angle ϕB.
Water was assumed to be the coolant.

5. Simulation results

As discussed above, the incident angle of electrons into target
depends on the Larmor spiral parameters and magnetic field
direction. The Larmor radius and spiral pitch are determined
from the ratio of the electron kinetic energy across the
magnetic field direction and the total particle kinetic energy
E⊥/E. Thereafter, using the term energy ratio we mean
the E⊥/E ratio. Because of such complex influence, the
actual incident angles of runaway electrons can be significantly
different from the initial magnetic field inclination αB that
used in most present calculations. We generated the incident
angle distributions for the benchmark case of magnetic field
inclination angle of αB = 1◦ as shown in figure 7. The curves
indicate that the true incident angle has a nonlinear dependence
on the energy ratio.

Figure 8 shows the effect of the nonlinearity in molten
layer thickness at the minimum and maximum energy ratio
values. These calculations were carried out for 50 MeV
incident electrons energy, magnetic field inclined of 1◦ to
target surface and impact duration of 0.01 s. The armor
material was beryllium. The calculations below show different
design cases for ITER assuming a total energy density of
50 MJ m−2, magnetic field value of 8 T (inboard wall) and
initial temperature of all materials to be 100 ◦C. The runaway
electron parameters used in this study were taken from those
values predicted for ITER and future tokamak devices [3, 19].
As shown in figure 8, the minimum molten layer thickness
corresponds to the widely considered case of the electrons
directed strongly along the magnetic field [15–19]. Figure 8(b)
shows the maximum temperature in Be and Cu materials as a
function of energy ratio. The case where all incident electrons
are parallel to the magnetic field (zero energy ratio) gives the
lowest thickness of the overheated layer. A runaway electrons
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Figure 8. Thermal response as a function of the transverse part of
kinetic energy for Be armor directly at the normal axis above
cooling tube. Electron energy, 50 MeV; magnetic field, angle, 1◦ and
impact duration, 0.01 s: (a) temperature and melting layer (grey) of
target; (b) maximum temperature of material.

energy ratio of 0.1 gives more than twice the molten layer
thickness than the parallel case.

The magnetic field incident angle variation adds another
peculiarity to the first wall damage response. Increasing the
magnetic field angle to 4◦ and larger, the runaway electron
energy can be deposited deep into the heat sink copper through
the external beryllium armor layer (see figure 9). HEIGHTS
modelling shows that for the ratio E⊥/E = 0.1, electron
energy of 50 MeV and impact duration of 0.01 s, a melting
depth of copper of up to 0.86 mm is developed in the 5◦ case.
The beryllium armor, was not melted; however, this permits
more electron heat flow to deeper layers. Therefore, magnetic
field angles larger than 4◦ are potentially dangerous for the first
wall since it can result in melting of the structure that is harder
to repair compared with the armor surface materials. Figure 9
shows such effect of melting of the copper heat sink for the
higher energy case of 50 MeV electrons.

The extent of the wall thermal evolution is strongly
dependent on the electron energy deposition profile. Figure 10
shows the spatial distribution of electron energy deposition
for Be, Cu and SS composite structure for different incident
energies. Energetic electrons penetrate deeper inside the
structure and can deposit significant fraction of its energy at
the coolant tubes. Figure 11 shows the effect of the kinetic
energy of runaway electrons on copper thermal response and
melting. The temperature profile is calculated for different
initial total energies of the electrons assuming a magnetic field

Figure 9. Thermal response as a function of the magnetic field
incidence angle for Be armor directly at the normal axis above
cooling tube. Electron energy, 50 MeV; energy ratio, 0.1 and impact
duration, 0.01 s: (a) temperature and melting layer (grey) of target;
(b) maximum temperature of material.

Figure 10. Spatial dependence of the electron energy deposition as
a function of incident energy for the Be/Cu/SS structure at the
normal axis (magnetic field angle, 5◦; energy ratio, 0.1 and impact
duration, 0.01 s).

angle of 5◦, an energy ratio of 0.1 and impact duration of 0.01 s.
As shown, copper melting takes place for incoming electrons
energy of 35 MeV or higher. Figure 11(b) shows the variation
of the maximum material temperature and the melted zones
as a function of incident total electron energy. The beryllium
armor reaches a maximum temperature for electron energies
near 40 MeV. This maximum corresponds to the beryllium–
copper border, i.e. armor heating by thermal conduction.

6
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Figure 11. Thermal response as a function of the electron incident
energy for Be armor directly at the normal axis above the coolant
tube, magnetic field angle is 5◦, energy ratio 0.1 and impact duration
0.01 s: (a) temperature and melting layer (grey) of target;
(b) maximum temperature of material.

The heat conduction influence on the temperature rise
of the materials is most notable during runaway electron
impact of 0.1 s. Figure 12 shows that an energy deposition
duration of electron impact that is longer than 0.01 s will
cause more energy to be dissipated with the heat conduction
process such that the copper layer will not melt. The heat
load spatial distribution in armor and structural materials is
shown in figure 13 for the two extreme cases of impact duration
t = 0.01 s and t = 0.1 s.

To prevent melting of the heat sink and possible mitigation
of the effect of runaway electrons, tungsten was analysed
as an armor material. HEIGHTS calculations, however,
show similar surface behaviour of the tungsten material
thermal evolution as described above for beryllium (figure 14).
Because tungsten is much heavier than beryllium the energy
deposition distance for the runaway electrons is much
shorter. Figure 14(a) shows the surface melting for different
magnetic field inclinations, smaller for 5◦ because of deeper
energy deposition (lower thermal load on surface layers).
Similar processes take place for increasing particle energy
(figure 14(b)). Deeper particle penetration decreases the
thermal loading of the surface and the melted layer thickness
is therefore lower. However, the negative aspect of using
tungsten as an armor material is surface melting of tungsten
by a wide range of runaway electron parameters. The heavy
metal is a too efficient absorber of the runaway electron energy.

Figure 12. Thermal response as a function of the electron impact
duration for Be armor directly at the normal axis above cooling tube.
Electron energy, 50 MeV; energy ratio, 0.1 and magnetic field angle,
5◦: (a) temperature and melting layer (grey) of target; (b) maximum
temperature of material.

Figure 13. Temperature distribution as a result of runaway electron
deposition along the normal axis above coolant tube for two extreme
electron impact durations.

Beryllium on the other hand, in opposite in this regard, i.e. it
absorbs less electron energy and allows more electron energy
to be deposited at the copper heat sink, and this can cause
interlaminar damage.

Two solutions are proposed for this problem: increasing
the beryllium thickness, or use of an additional ‘slowing down’
layer above the heat sink structure. Because beryllium is
harder to use (being toxic, etc) the second option was analysed
for the first wall heat protection. We studied an additional
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Figure 14. Temperature distribution after runaway electron
deposition along the normal axis above coolant tube (energy ratio,
0.1; impact duration, 0.01 s) as dependence on: (a) magnetic field
inclination angle of electron energy of 50 MeV; (b) runaway
electron energy with magnetic field angle of 5◦.

Figure 15. Dependence of maximum temperature on tungsten
thickness located on copper surface. Incident electrons energy,
50 MeV; magnetic field angle, 5◦, energy ratio, 0.1 and impact
duration, 0.01 s.

tungsten layer (see thick dashed line in figure 6) above the
copper heat think. The total size of the armor mockup is
maintained constant, i.e. the beryllium layer was reduced in
thickness and exchanged with an additional tungsten layer of
equivalent thickness as shown with the dashed line in figure 6.
Figure 15 shows the resulting HEIGHTS-computed runaway
electron maximum temperature in all materials as a function
of tungsten layer thickness, for the option where tungsten is
located directly between beryllium and copper layers. This
calculation is for the electron energy of 50 MeV, energy ratio
of 0.1, magnetic field inclination of 5◦, and impact duration of
0.01 s. Figure 15 also shows that copper surface begins to melt
for a tungsten layer thinner than 1 mm and the beryllium layer
melts for W thickness higher than 0.5 mm. This configuration
therefore does not protect the structure from melting.

Figure 16. Dependence of maximum temperature on tungsten
thickness located at 0.5 cm from the top surface of mockup
(Sandwich design). Incident electrons energy, 50 MeV; magnetic
field angle, 5◦; energy ratio 0.1 and impact duration, 0.01 s.

Figure 17. Temperature distribution as a result of runaway electron
deposition along the normal axis above coolant tube for two extreme
impact durations. The 0.1 mm W layer is located on the 5 mm depth
(blue curve) and on the Cu surface (red curve). Incident electrons
energy 50 MeV, magnetic field angle 5◦, energy ratio 0.1, and impact
duration 0.01 s.

However, opposite to the previous case, the location of the
tungsten layer inside beryllium does make a difference in the
structural response to the incident electrons. Figure 16 shows
the maximum temperature in the materials for tungsten layer
located at 0.5 cm from the top surface (at half-thickness of Be).
Shown in green is the safe thickness of tungsten for which all
layers will remain in solid state and no melting takes place.
The explanation of this result can be found in figure 17. The
temperature distribution is shown as a function of the mockup
depth. Part of the deposited energy into copper is redistributed
into the beryllium layer. The heat load spreads through all the
mock up volume and the thermal heat wave is attenuated. The
complex ‘sandwich’ design of the armor has the advantage
of mitigating the heat load distributions in both the armor
and in the structural materials. This design is complicated
and requires careful manufacturing technology. However,
current and advanced design technologies of fusion materials
often explore various combinations of innovative bulk layers,
composites and coatings [47, 48]. Optimization of first wall
armor and structural materials design and configurations will
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be the subject of further future investigations using HEIGHTS
integrated simulation package.

6. Conclusions

Physical and mathematical models are developed and
benchmarked for simulating the main processes that occurs
in ITER tokamak PFCs during runaway electron impact.
Energy deposition, material thermal response and melting are
calculated for a wide range of incident electron parameters:
kinetic energy, magnetic field direction, energy ratio (along
and across magnetic field direction), impact duration and
armor material. Most previous calculations considered the
initial runaway electron beam direction as parallel to the
magnetic field flow. Our calculations showed that taking into
account both the parallel and perpendicular electron energy
components has a significant impact on the wall armor and
structural thermal response. The actual incident angle of high-
energy electrons varies in a narrow range because of their spiral
trajectories and the small magnetic fields inclination angle. It
is shown that the standard ITER geometry of first wall with
beryllium armor can melt at the interface with the structural Cu
material. Using tungsten armor instead caused surface melting
of the mockup for all the parameters of runaway electrons
considered in this study. Using an insert of a thin tungsten
layer in between the beryllium armor and Cu structure prevents
melting of all structure for the parameters considered. Design
optimization using the HEIGHTS package can further improve
and protect future tokamak devices from runaway electron
damage.

Acknowledgments

This work is supplied by the US Department of Energy, Office
of Fusion Energy Sciences.

References

[1] Einat M. and Jerby E. 1997 Phys. Rev. E 56 5996
[2] Gill R.D., Alper B., Edwards A.W., Ingesson L.C.,

Johnson M.F. and Ward D.J. 2000 Nucl. Fusion 40 163
[3] Chen Z.Y., Wan B.N., Lin S.Y., Shi Y.J. and Hu L.Q. 2006

Phys. Lett. A 351 413
[4] Ninomiya H. et al 2000 Nucl. Fusion 40 1287
[5] Nishimura E. 1983 Japan. J. Appl. Phys. 22 1182
[6] Kurzan B., Steuer K.-H. and Fussmann G. 1995 Phys. Rev.

Lett. 75 4626
[7] Esposito B. et al 1996 Plasma Phys. Control. Fusion 38 2035
[8] Tamai H., Yoshino R., Tokuda S., Kurita G., Neyatani Y.,

Bakhtiari M., Khayrutdinov R.R., Lukash V.E.,
Rosenbluth M.N. and JT-60 Team 2002 Nucl. Fusion 42 290

[9] Shevelev A.E. et al 2004 Plasma Phys. Rep. 30 159
[10] Martin-Solis J.R., Esposito B., Sanchez R., Poli F.M. and

Panaccione L. 2006 Phys. Rev. Lett. 97 165002
[11] Martın-Solıs J.R., Sanchez R. and Esposito B. 2000 Phys.

Plasmas 7 3369
[12] Pankratov I.M. 2000 Problems At. Sci. Tech. 6 58
[13] Helander P., Eriksson L.-G. and Andersson F. 2002 Plasma

Phys. Control. Fusion 44 B247
[14] Eriksson L.-G. and Helander P. 2003 Comput. Phys. Commun.

154 175

[15] Gilligan J., Niemer K., Bourham M., Croessmann C.,
Hankins O., Tallavajula S., Mohanti R. and Orton N. 1990
J. Nucl. Mater. 176&177 779

[16] Bartels H.-W. 1993 Fusion Eng. Des. 23 323
[17] Kunugi T. 1993 Fusion Eng. Des. 23 329
[18] Cardella A., Goren H., Lodato A., Ioki K. and Raffray R. 2000

J. Nucl. Mater. 283–287 1105
[19] Maddaluno G., Maruccia G., Merola M. and Rollet S. 2003

J. Nucl. Mater. 313–316 651
[20] Hender T.C. et al Progress in the ITER Physics Basis 2007

Nucl. Fusion 47 S128
[21] Hassanein A., Morozov V., Tolkach V., Sizyuk V. and

Konkashbaev I. 2003 Fusion Eng. Des. 69 781
[22] Hassanein A. and Konkashbaev I. 2003 J. Nucl. Mater.

313–316 664
[23] Sizyuk V., Hassanein A. and Bakshi V. 2007 J.

Micro/Nanolithogr. MEMS MOEMS 6 043003
[24] Berestetskii V.B., Lifshitz E.M. and Pitaevskii L.P. 1982

Course in theoretical physics: V4. Quantum
Electrodynamics 2nd edn (Burlington:
Butterworth-Heinemann)

[25] Bazylev B., Miloshevsky G., Romanov G. and Suvorov A.
1994 Method Monte Carlo of the Bremsstrahlung modeling
Preprint HMTI Minsk 97-103

[26] Miloshevskii G.V. 1998 J. Eng. Phys. Thermophys. 71 874
[27] Bazylev B.N., Golub L.V., Romanov G.S. and Tolkach V.I.

1990 J. Eng. Phys. Thermophys. 58 1012
[28] Bazylev B.N., Golub L.V., Romanov G.S. and Tolkach V.I.

1990 J. Eng. Phys. Thermophys. 59 62
[29] Hubbell J.H., Gimm H.A. and Overbo I. 1980 J. Phys. Chem.

Ref. Data 9 1023
[30] Kadomtsev B.B. 1957 JETP 33 151
[31] Halbleib J.A., Kensek R.P., Valdez G.D., Seltzer S.M. and

Berger M.J. 1992 IEEE Trans. Nucl. Sci. 39 1025
[32] Kolchuzhkin A.M. and Uchaikin V.V. 1978 Introduction in

Theory of Particles Transmission Through Matter (Moscow:
Amotizdat)

[33] Gluckstern R.L. and Hull M.H. 1953 Phys. Rev. 90 1030
[34] Haug E. and Nakel W. 2004 The Elementary Process of

Bremsstrahlung (World Scientific Lecture Notes in Physics
vol 73) (Germany: Tubingen University) p 45

[35] Hammersley J.M. and Handscomb D.C. 1964 Monte Carlo
Methods (London: Chapman and Hall)

[36] Plesheshnikov A.V. and Kolchuzhkin A.M. 1975 At. Energy
39 53

[37] Hassanein A., Sizyuk V., Sizyuk T. and Morozov V. 2007
Proc. SPIE 6517 65171X

[38] Hassanein A., Sizyuk V. and Sizyuk T. 2008 Proc. SPIE 6921
692113

[39] Sizyuk V., Hassanein A., Morozov V., Tolkach V. and
Sizyuk T. 2006 Numer. Heat Transfer A 49 215

[40] Miloshevsky G.V., Sizyuk V.A., Partenskii M.B., Hassanein A.
and Jordan P.C. 2006 J. Comput. Phys. 212 25

[41] Lockwood G.J., Ruggles L.E., Miller G.H. and Halbleib J.A.
1980 Calorimetric measurement of electron energy
deposition in extended media—theory versus experiment
Report SAND79-0414 (Sandia Laboratories)

[42] Nakai Y. 1963 Japan. J. Appl. Phys. 2 743
[43] Tabata A. 1994 At. Data Nucl. Data Tables (National Bureau

of Standards, USA) 56 105
[44] Spencer L.V. 1959 Energy dissipation by fast electrons

Monograph 1 (Natl Bureau of Standards)
[45] Kobetich E.J. and Katz R. 1968 Phys. Rev. 170 391
[46] Morawska-Kaczynska M. and Huizenga H. 1992 Phys. Med.

Biol. 37 2103
[47] Gruber O. 2007 Nucl. Fusion 47 S622
[48] Shikov A.K. and Beliakov V.A. 2007 J. Nucl. Mater.

367–370 1298

9

http://dx.doi.org/10.1103/PhysRevE.56.5996
http://dx.doi.org/10.1088/0029-5515/40/2/302
http://dx.doi.org/10.1016/j.physleta.2005.11.026
http://dx.doi.org/10.1088/0029-5515/40/7/201
http://dx.doi.org/10.1143/JJAP.22.1182
http://dx.doi.org/10.1103/PhysRevLett.75.4626
http://dx.doi.org/10.1088/0741-3335/38/12/001
http://dx.doi.org/10.1088/0029-5515/42/3/309
http://dx.doi.org/10.1134/1.1648942
http://dx.doi.org/10.1103/PhysRevLett.97.165002
http://dx.doi.org/10.1063/1.874201
http://dx.doi.org/10.1088/0741-3335/44/12B/318
http://dx.doi.org/10.1016/S0010-4655(03)00293-5
http://dx.doi.org/10.1016/0022-3115(90)90143-B
http://dx.doi.org/10.1016/0920-3796(94)90016-7
http://dx.doi.org/10.1016/S0022-3115(00)00151-3
http://dx.doi.org/10.1016/S0022-3115(02)01575-1
http://dx.doi.org/10.1088/0029-5515/47/6/S03
http://dx.doi.org/10.1016/S0920-3796(03)00153-4
http://dx.doi.org/10.1016/S0022-3115(02)01376-4
http://dx.doi.org/10.1117/1.2804128
http://dx.doi.org/10.1007/BF02681639
http://dx.doi.org/10.1109/23.159753
http://dx.doi.org/10.1103/PhysRev.90.1030
http://dx.doi.org/10.1080/10407780500324996
http://dx.doi.org/10.1016/j.jcp.2005.06.013
http://dx.doi.org/10.1143/JJAP.2.743
http://dx.doi.org/10.1006/adnd.1994.1003
http://dx.doi.org/10.1103/PhysRev.170.391
http://dx.doi.org/10.1088/0031-9155/37/11/007
http://dx.doi.org/10.1088/0029-5515/47/10/S11
http://dx.doi.org/10.1016/j.jnucmat.2007.03.243

	1. Introduction
	2. Mathematical and physical model
	3. Validation and benchmarking
	4. PFC setup and geometry
	5. Simulation results
	6. Conclusions
	 Acknowledgments
	 References

